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An information-theoretic notion of entropy is proposed for a system of N 
interacting particles which assesses an observer's limited knowledge of the state 
of the system, assuming that he or she can measure with arbitrary precision all 
one-particle observables and correlations involving some number p of the parti- 
cles but is completely ignorant of the form of any higher-order correlations 
involving more than p particles. The idea is to define a generic measure of 
entropy S[~]  = -Tr /~  log/2 for an arbitrary density matrix or distribution func- 
tion/~, and then, given the "true" N-particle/~, to define a "reduced"/x P which 
reflects the observer's partial knowledge. The result, at any time t, is a chain of 
inequalities S [ ~ ]  -> S[/~ 2] ->. �9 �9 -> S[pr~] =- S[/z], with true equality S[/z~] = 
S[tt p+t] if and only if the true/z factorizes exactly into a product of contributions 
involving all possible p-particle groupings. It follows further than (1) if, at some 
initial time to, the true/~ factorizes in this way, then S[ /~( t ) ] ->  S[/zP(to)] for 
all finite times t >  to, with equality if and only if the factorization is restored, 
and (2) the initial response of the system must be to increase its p-particle entropy. 

1. M O T I V A T I O N  

T h e  o b j e c t  o f  t h i s  p a p e r  is to  i n t r o d u c e  m e a s u r e s  o f  t i m e - d e p e n d e n t  

n o n e q u i l i b r i u m  e n t r o p y  S ( t )  f o r  a c o l l e c t i o n  o f  N i n t e r a c t i n g  p a r t i c l e s  

w h i c h  (1)  a r e  r e a s o n a b l e  m a t h e m a t i c a l l y  a n d  (2)  a c c o r d  w i t h  t h e  p h y s i c a l  

i n t u i t i o n  t h a t  S s h o u l d  i n c r e a s e  as  t h e  s y s t e m  b e c o m e s  " m o r e  r a n d o m "  o r  

a n  o b s e r v e r ' s  k n o w l e d g e  o f  i ts  s t a t e  b e c o m e s  " m o r e  i m p e r f e c t . "  

T h e  u n d e r l y i n g  a s s u m p t i o n  o f  t h e  a n a l y s i s  is t h a t  t h e  s t a t e  0 f t h e  s y s t e m  

c a n  b e  c h a r a c t e r i z e d  b y  a n  o b j e c t  /z ( x l ,  p l , . . . ,  xN, PN;  t)  ---/x ( 1 , . . . ,  N ) ,  

t h e  e v o l u t i o n  o f  w h i c h  is g o v e r n e d  b y  a l i n e a r  L i o u v i l l e  e q u a t i o n  

o~/o t  = - L ~  (1) 
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For a classical system, /z is an N-particle distribution function which 
depends at each instant of time on the canonical coordinates and momenta 
xi and Pi, and L is the Poisson bracket associated with the Hamiltonian 
H(t), i.e., L =  {H,.. .}.  In the corresponding quantum description,/z is an 
N-particle density matrix, the xi and p; are reinterpreted as operators, and 
L denotes instead a commutator, so that L = i[H, ...]. 

Given the form of /z at some time t, one can construct reduced 
distribution functions or density matrices, such as the one-pa.rticle f( i)  or 
the two-particle g(i,j), via partial traces; and, by combining algebraically 
the f(i),  the g(i,j), and so forth, one can generate objects o- (1 , . . . ,  N).  It 
will be assumed throughout this paper that any reasonable measure of 
entropy S is "local in time" in the sense that it can be expressed as the 
trace of some tr(t): 

N 

S(t) = II T u c r ( 1 , . . . ,  N;  t)=-Tr ~r(1, . . . ,  N;  t) (2) 
j = l  

where Trj denotes a trace over the degrees of  freedom of the j th  particle 
at time t (so that, e.g., for a classical system, Trj is a six-dimensional phase 
space integral). 

The "ordinary" entropy Sf is of this form, corresponding to the choice 
o- = - /z  log/z. It is, however, clear that 5 ~ does not accord completely with 
one's intuition as to the behavior of an entropy. The fact that L is linear 
and, more importantly, satisfies the Leibnitz rule implies trivially that 
d~/dt  =- O. Even if the system "appears to become more random," 5 ~ cannot 
change with time. 

From the information-theoretic point of view, this is easy to understand. 
If  one in fact knows the form of/~ at all times, which is necessary to evaluate 
.90, one knows everything about the system, so that there can be no sense 
in which information is lost as time goes by. If  one is to obtain a measure 
of entropy which exhibits a nontrivial time dependence, one must introduce 
a ~r which contains less information than the total /z. The definition of S 
must entail some "coarse graining." 

The "appropriate" or "natural" coarse graining will of course reflect 
the actual sorts of measurements which an observer can perform on the 
system. If, for example, one can measure correlations between pairs of 
particles, as encapsulated in the full g(i,j), he or she can clearly know more 
about the system than if only the one-particle f( i)  are accessible. And, 
similarly, if one can locate particles only within an accuracy of +1 mm, he 
or she can know less about the state than if measurements can be made to 
an accuracy of +1 ~ .  

Given this observation, one might therefore ask: What is really meant 
when one says that some system has become "more random?" And at least 
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one reasonable answer to this seems obvious: As a practical matter, an 
experimenter measures one-particle observables such as the average position 
or momentum of some particle, and perhaps correlations between pairs of  
particles, and then says that the system becomes "more  random" if the 
distribution of positions or momenta,  or correlations between pairs, become 
"more  random."  "Loss of  information" and "increasing randomness"  can 
arise because, as a practical matter, one does not follow the evolution of 
all the higher-order correlations buried in the full density matrix or distribu- 
tion function ~. One can measure only some "piece" P~R o f  the total ~. 

From this point of  view, one might argue that the prescription to define 
the entropy should entail a twofold process. 

1. Given the sorts of  measurements accessible to the observer, construct 
a "relevant" or approximate /zR which constitutes the "best guess" as to 
the form of  the total/~. I f  the physical coarse-graining corresponds to an 
ignorance of all interparticle correlations, /-~R must involve only the one- 
particle f(i). If, alternatively, the observer can measure everything about 
the system, jr./, R should coincide with the total/~. 

2. Given this reduced /~R, define an entropy S[/~R(t)] by some pre- 
scription 

S[/~a(t)] = Tr cr ( /~( t ) )  (3) 

supposing that cr is not some arbitrary function of ~ and all the reduced 
density matrices, but, instead, is a function only of the reduced /~a. 

Ideally, one would also like to demand that the rule to generate S be 
independent of  the specific coarse graining or, more precisely, of  the rule 
to generate /~R. This would mean, for example, that one has a "natural"  
way of comparing the entropies associated with two different coarse grain- 
ings, and, in particular, of  comparing the entropy of some given coarse- 
grained description with the "total"  entropy S[/~]. Thus, in principle, by 
restricting attention first to one-particle observables, then to two-particle 
observables, and so forth, one could hope to generate a succession of 
approximate density matrices / . 1 , / ~ , . . . ,  and use these to construct a 
col lect ionofentropies  S[ /z l ]  $1, 2 _ S[~  ~] = $2,. �9 �9 . And, if the information- 
theoretic interpretation of  these entropies were to be valid, one would then 
be able to show a chain of  inequalities $1-> $ 2 - "  �9 �9 -> SN connecting the 
p-particle entropies. 

This paper  will in fact implement this program abstractly, and then 
consider explicitly the form and evolution of the one-particle $1. This entails 
(1) defining a generic rule for the construction of O-(~R), (2) ascertaining 
an appropriate  /ZR for the p-particle description, and then (3) showing that 
these rules lead to a picture in accord with physical intuition. The form 
and evolution of the two-particle $2 is considered explicitly in a companion 
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paper (Kandrup, 1988). At this stage, one can therefore ask what further 
demands one should impose on these entropies. 

One natural requirement to impose is that the N-particle entropy SN 
assume the Gibbs (1902) form, i.e., that, given a knowledge of the full 
N-particle/~, one identify an entropy 

SN = - T r / z  log/x (4) 

This is, e.g., in full accord with the intuition provided by information theory 
(see, e.g., Khinchin, 1953; Shannon, 1948). 

In the absence of correlations, the full many-particle/z factorizes into 
a product of one-particle contributions f ( i )  where, explicitly, 

N 

f ( i ;  t) =- 11 T r j / z ( 1 , . . . ,  N;  t) (5) 
j ~ i = l  

so that the Gibbs entropy reduces to the Boltzmann (1872) form 

N 

SB = - E Tr i f ( i )  log f ( i )  (6) 
i = l  

If  one knows nothing about any interparticle correlations, it seems natural 
to suppose that 

N 

I~( t )  : I] f ( i ;  t) (7) 
i=1  

i.e., to assert that one's "best guess" is that no correlations are present, and 
then define a one-particle 

S~ - T r  1 1 = gR log /XR (8) 

which agrees with Boltzmann's SB. 
Another obvious demand is that the entropies Sp increase as interpar- 

ticle correlations grow. In general, the statement that one state has "more 
correlations" than another is difficult to quantify, but there is at least one 
criterion that is easy to impose. If, initially, at some time to, the system is 
totally free of  correlations, any interactions among the particles will induce 
correlations; consequently, if such interactions are present, the initial 
response of an uncorrelated state should be to increase its entropy. The 
dynamics should induce a "spontaneous generation of entropy," implying 
that, for p ~ N, Sp(tod-At ) > Sp(to). 

If, alternatively, there are no interactions among the particles, an 
initially uncorrelated state will remain uncorrelated and the entropy should 
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remain unchanged as the system evolves. More generally, even if there do 
exist initial correlations, these will evolve trivially in the absence of interac- 
tions; consequently, one can demand that dSp/dt vanish identically for 
arbitrary initial conditions in the absence of  particle interactions. 

It should be stressed that, from this point of view, S need not accord 
completely with the intuition that it increases as the system becomes "more 
random." A clump of  classical noninteracting particles confined initially to 
some small region in space and then released will eventually spread out to 
occupy a larger area, and one might argue legitimately that this spreading 
makes the system "more random." Nevertheless, the measure of entropy 
Sp defined here will not change during this spreading process. The important 
point is that S v makes a distinction between "phase mixing" and "dissipa- 
tion," or, more precisely, between linear and nonlinear (or nonlocal) 
evolutions. 

In the absence of  interactions, each f( i)  will satisfy a free Liouville 
equation 

of(i)/Ot =-L~ t) (9) 

which, at least for a time-independent Hamiltonian H, is time-reversal 
invariant. Formally, therefore, the Liouville equation predicts that the 
initially clumped configuration will diffuse over larger areas both as t--> co 
and as t - ->-~.  This diffusion represents a type of phase mixing akin to 
Landau damping in an electrostatic plasma (Case, 1959; Habib et al., 1986) 
or to the spreading of a wave packet in ordinary quantum mechanics. 

When interactions are present, however, the physics is fundamentally 
different. In this case, the time derivative Of(i)/Ot involves not only f(i),  
but also (for two-body interactions) the pair correlation g(i,j), and, con- 
sequently, one cannot extract a local and linear time-reversible dynamics 
involving only the f(i). As discussed in Section 5, one can solve formally 
for the evolution of g(i,j;.t) in terms of  the f(i)  at retarded times t - z ,  
obtaining thereby closed equations for the evolution of the f(i),  but this 
fundamentally nonlocal and nonlinear description leads to an effective 
"dissipation." Indeed, it is precisely this nonlocal and nonlinear character 
which induces a nontrivial dSl/dt. 

The notion of  entropy Sp developed here treats the evolution of higher- 
order correlations as fundamental. Processes which generate these correla- 
tions may also make the system appear more random at the p-particle level, 
but this evolution toward a "more random state," albeit important, is 
considered less fundamental than the concept of  information loss. 

One principal intuition regarding an entropy is that it should increase 
monotonically, satisfying an H-theorem dS/dt >- O. It is therefore important 
to indicate two physical effects which could destroy this monotonicity. 
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The more obvious of these is that the system under consideration could 
be periodic, or very nearly so. Indeed, Poincar6 recurrence (Zermelo, 1896) 
says that most realistic systems are in fact nearly so (although the period 
may be extremely long !). This is, for example, certainly true for a collection 
of linearly coupled oscillators if the natural frequencies toi and couplings 
c~ are chosen appropriately. And, if a system is totally periodic, with period 
T, it follows immediately that/z (to + T) =/z (to). This means that if one starts 
with an uncorrelated configuration at time to, so that t z ( to )= [ I i f ( i ;  to), 
and the entropy initially increases from some So, it must eventually reach 
some maximum value Smax and then decrease to the initial So by time to+ T. 
This, however, is hardly surprising. An initially uncorrelated configuration 
will immediately develop correlations--so that S will increase--but,  event- 
ually, if the system is periodic, the correlations will decay, and S must 
decrease to reflect this fact. 

Related to this is another important effect. If, initially, the system is 
endowed with nontrivial correlations among the particles, it may well be 
true that dS(to)/dt is negative. By endowing the system with "special" initial 
conditions, one can (at least in principle) induce a "stimulated decrease in 
the entropy." The physical expectation underlying the notion that the Sp 
should increase is that no significant initial correlations can exist. When 
preparing a system initially, one may endow the particles with specified 
f(i), but, typically, one cannot specify nontrivial correlations among the 
particles. This is indeed the intuition underlying Boltzmann's (1872) assump- 
tion of "initial molecular chaos." In any case, one may argue that, in this 
sense, the fact that Sp increases reflects initial conditions as well as (or 
instead of) dynamics. Moreover, even allowing for nontrivial initial condi- 
tions, the time derivative dSp/dt can always be decomposed into a sum of 
two contributions, one reflecting the initial correlations, which is of indeter- 
minate sign, and another, reflecting the systematic generation of correlations, 
induced by interactions, which must increase at least initially. 

To summarize: The physical intuition that S v should increase monotoni- 
cally is based on two assumptions: (1) that the contributions to dSv/dt 
reflecting nontrivial initial correlations may be ignored, and (2) that, for 
many realistic systems, the time scale T associated with any true or approxi- 
mate periodicity is much longer than any other time scale of interest. 

Section 2 of this paper presents a concrete prescription for constructing 
the p-particle "entropies" Sp, and then shows that they do indeed satisfy 
most of the aforementioned demands as to the behavior of an entropy. 
Section 3 discusses explicitly the case when p = 1. Section 4 considers 
abstractly the possibility of expressing dSv/dt, like Sp itself, as a functional 
of ~f~, and Section 5 demonstrates explicitly that this can be done when 
p = 1. Section 6 uses the one-particle S1 to study a system of  two linearly 
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coupled oscillators, and Section 7 uses the results of this model calculation 
to motivate several general conjectures as to the generic evolution of dS1/dt. 

2. T H E  P - P A R T I C L E  E N T R O P I E S  

Given the true N-particle density matrix or distribution function ht, 
one can of course compute the observable reduced p-particle quantities 

f p ( i l , . . . , i , ) - =  H T r j / z ( 1 , . . . , N )  (10) 
j ~ il , . . . , i  p 

The obvious point, however, is that there are many different N-particle/2's 
which would yield the same fp. The key idea, therefore, is to start with the 
fp as the only given observable quantities, and, from these fp, to construct 
a "most likely" or "best guess" ~P in terms of which to define the p-particle 
entropy Sp. The proposal here is that one choose that par t icu la r /~  construc- 
ted only from the fp which maximizes the entropy functional 

S[/.7 ] - =  -Tr /2  log/2 (11) 

subject only to the constraints that 

H Tr j /2(1 , . . . ,  N ) = f p ( i l , . . .  , / p )  (12) 
j # il,.:.,ip 

[For p =2,  f2(i,j) corresponds to the g(i,j)  of Section 1.] 
This prescription is a very natural one from the standpoint of informa- 

tion theory, at least for a classical system where/x admits to an unambiguous 
interpretation as a probability density. Thus, if one discretizes the N-particle 
phase space into some set of cells F~ and considers probabilities p~ that 
each cell is occupied, simple combinatorics shows that 

S = -~,Pi logpi (13) 
i 

is essentially the logarithm of the number of states consistent with the 
probabilities Pl. Maximizing S corresponds, therefore, to choosing the "most 
likely"/x. 

The form of the desired /z~ is obtained most easily by introducing 
Lagrange multipliers Tp(i l , - . - ,  ip) which enforce the constraints (12). 
Assume for simplicity that the particles under consideration are distinguish- 
able, so that one need not worry about complications associated with Bose 
or Fermi statistics. It is then natural to demand that fp be symmetric under 
particle interchange, so that one is led to consider the quantity 

S * = - T r / 2 1 o g / 2 +  EY, T r y v ( i l , . . . , i p ) 1 2 ( 1 , . . . , N )  (14) 
i l < ' " < i  p 
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The condition that the first variation ~1)S* = 0 then implies that 

l + l o g / x  v =  ~)~ 7 p ( i l , . . . , i p )  (15) 
i l < " ' < i  p 

or, with an obvious redefinition of the Lagrange multipliers, that 

tx~ = ~I z e ( i , , . . . ,  iv) (16) 
i l < " ' < i  p 

In other words, any extremizing/z[  must factorize exactly into a product 
of  p-particle groupings. 

To verify that there is a unique extremizing /x~ factorizing in this 
fashion and that th i s /x [  is also an entropy maximum is completely trivial. 
Because the constraints (12) are linear, it suffices to observe that 

/5<2)S = -�89 Tr(/xv)- '(~/2) 2 < 0 (17) 

To express the zp in terms of the fp so as to evaluate the S, explicitly 
is a much more difficult task. When p = N, it is clear that zp =/z, so that SN 
coincides with the Gibbs entropy, but, aside from this trivial case, o n l y / z [  
is known analytically. However, even without solving for the zp as functions 
of  the f , ,  one can in fact conclude a great deal. 

Most obvious is the fact that / ~  can coincide with the true g = / z ~  
only if that true N-part icle/z has no "irreducible" (p + 1)-particle correla- 
tions. If/x,  and hence fv+~, cannot be expressed solely in terms of the fp, 
the desired factorization into p-particle pieces is clearly impossible. It thus 
follows that Sp >- SN, with equality possible only i f /z  itself can be realized 
in terms of the fp. More generally, since the ( p +  1)-particle description 
must imply all the results of the p-particle description, a similar logic dictates 
that 

$1 >- $2 >-" " �9 >- SN-1 >-- SN (18) 

with Sp = Sp+~ if and only if zp+~ factorizes into a product o f p  + 1 contribu- 
tions ~p. This means, in particular, that Sp must be strictly greater than Sp+l 
unless the (p + 1)-particle fp+l can be expressed as combinations of the fp. 

It follows further that if, at some time to,/x factorizes into the desired 
product of p-particle groupings, then, for all t > to, 

Sp(t) >- Sp(to) (19) 

with equality holding if and only if, at time t, the factorization has been 
restored. To see this is trivial. It follows from (1) that d S N / d t  =- 0, and thus, 
by virtue of (18) and the special choice of initial condition, Sp(t) >- SN( t )  = 
SN (to) = S,  (to). If, in particular, the system is completely free of correlations 
at time to, one knows that S~ = $2 . . . . .  SN initially and that, later, each 
of the Sp will satisfy the inequalities (18) and (19). One has the further 
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intuition that, at least initially, Sp will grow faster than Sp+l. The sense in 
which this is true will be discussed for $2 and $1 in Kandrup (1988). 

One might naively like to conclude further that, whenever the t rue /z  
is constructed solely from the fp, Sp = Sp+l . . . . .  SN. However, this is quite 
false! Consider, e.g., the case when N = 4  and p = 2 .  One then verifies 
immediately that the density matrix 

/2p = f2(1, 2)f2(3, 4)+f2(1, 3)f2(2, 4)+f2(1, 4)f2(2, 3) 

-2f~(1)f~(2)f~(3)f1(4) (20) 

built only from the f2's does indeed satisfy the constraints (12), but, since 
it is not of the form (16), one knows that S[I@] > S[/x2]. This inequality 
should reflect the fact that the state/2p is "less probable" than tz~, reflecting, 
e.g., a more specialized preparation. This, however, seems reasonable. There 
can exist many/2 's  constructed only from the f2's that satisfy the constraints 
(12), and some of them will certainly be "'stranger" than others. As illustrated 
in Kandrup (1988), what makes the special choice /x 2 "less strange," at 
least intuitively, is that it corresponds precisely to the "approximate" form 
of /z  suggested by a Kirkwood (1935), or cluster, decomposition. 

3. THE SPECIAL CASE p = 1 

As noted already, zN =/~, so that, given a complete knowledge of  the 
state of the system, one recovers the Gibbs entropy SN = - T r ~  log/~. 
Alternatively, at the other extreme, when p = 1, it is easy to see that zl(i) = 
f~(i), so t h a t / ~ I : - l ~ J l ( i )  and one recovers the Boltzmann SB of  equation 
(6). Unfortunately, the situation is more complicated for 1 < p < N, so that, 
hitherto, exact formulas for the Sp have not been derived. Thus, e.g., choosing 
each zp( i l , . . . ,  ip) to equal f p ( i l , . . . ,  ip) overcounts the particles in the 
p r o d u c t / ~ ,  and the most naive modifications that one might envision all 
prove unsatisfactory. Approximate results can, however, be derived per- 
turbatively in the limit of "weak" correlations. Thus, e.g., as described in 
Kandrup (1988), one can compute $2 as a power series in A if one supposes 
that the two-particle 

f2( i,j) = fl( i)f~(j)[1 + AT(i,j)] (21) 

In any event, though, given an analytic expression for $1, one can 
evaluate the time derivative dS1/dt so as to study how S1 grows from an 
initially uncorrelated state with/~ (to) = ~ 1(to). Suppose, for specificity, that 
/~ is a classical distribution function and that the particles interact via 
two-body forces F(j-* i) which derive from a potential cP(Ix~l). In this case, 
as is well known (Bogoliubov, 1946), the Liouville equation implies that 

Ofl(i)/Ot+(p,/m)Ofl(i)/Ox,+ }~ T r : F ( j ~ i )  Of 2(i,j)/Op,=O (22) 
j r  
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and analogous relations connecting Of 2(i,j)/Ot with all the f3(i,j, k). These 
are nothing other than the first two equations of the BBGKY hierarchy. 

It follows immediately from (22), with some straightforward integra- 
tions by parts, that 

dSl(t)/dt  = - ~  Tri[1 + log f l ( i ) ]  Ofl(i)/Ot 
i 

= -Y. ~ Tri Trj logf l ( i )F( j  ~ i) Of 2(i,j)/Opi (23) 

an equality which demonstrates explicitly that dS1/dt cannot be realized 
as a local functional o f / , 1 .  One can, however, evaluate dS~(to+At)/dt 
perturbatively for an initial state free of correlations. Thus, by exploiting 
the fact that 

f3( i,j, k; to)=f~(i; to)f~(j; to)fx(k; to) (24) 

one can solve the equation for of 2(i,j)/Ot to obtain f2(to+At), and, by 
inserting that solution into (23), one concludes that 

dSl(to+ At)/dt  = At Tr[/~Rl(to)] r > 0 (25) 

Here 

where 

= Z Y~ o~(j ~ i) O/*~/Opi ------ 5(/*R (26) 
i # j  

~(j-+ i) ==- F(j-+ i ) - T r : f ( j ) F ( j ~  i) (27) 

Analogous results are obtained for a quantum system, provided that ~ is 
appropriately reinterpreted as the difference between the "true" quantum 
Liouville operator and an "average" (L) (Hu and Kandrup, 1987, Section 3). 

The obvious point to observe is that 

S,(to+ At) - Sl(to) oc (At) 2 (28) 

a proportionality that reflects the fact that an uncorrelated/*R(to) at time 
to maximizes Sl(to). 

4. NONLOCAL p-PARTICLE SUBDYNAMICS 

Equation (23) illustrates an important point, true more generally, 
namely that in the presence of interactions the time derivative dSp/dt, unlike 
Sp(t) itself, cannot be expressed as a functional of/*P(t) .  This means that, 
even though Sp involves only the "physically accessible" pieces of the total 
/*, dSp/dt appears to involve other pieces of/* (namely the full fp+l), which, 
by assumption, are physically inaccessible. This would seem a serious 
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blemish for a theory of entropy which purports to focus exclusively on 
accessible quantities; as such, it is natural to ask whether there is any sense 
in which dSp/dt can be expressed solely in terms of the fv- 

The answer to this query is a qualified yes. Specifically, to the extent 
that the "relevant" /x p and the "irrelevant" remainder t z f ~ / z - / ~ P  are 
orthogonal in an appropriate sense,/z~ may be shown to satisfy a nonlocal 
"subdynamics," whereby 0/zP(t)/0t is expressed as a nonlinear functional 
of /~P at retarded times t - r .  Given such an equation, dSp(t)/dt can also 
be realized in terms o f / ~ P ( t - r ) .  

It should perhaps be observed that the notion of a "subdynamics" has 
been interpreted by various authors as meaning different things. Here it is 
meant simply that, given a "complete" dynamical description, encapsulated 
in a density matrix/~ which satisfies a closed evolution equation like (1), 
one can construct a "less complete" reduced /~R which again satisfies a 
closed (albeit not necessarily local or linear) equation with no explicit 
reference to/zI ---/z -/~R except through the propagation of an initial condi- 
tion/~i(t0). More sophisticated and refined formulations are certainly poss- 
ible, as exemplified by the approach developed by the so-called Brussels 
school (Balescu, 1975), but these are superfluous for what follows. The 
specific implementation described here generalizes the approach of Willis 
and Picard (1974). 

Abstractly, the notion of a subdynamics can be implemented by the 
construction of an appropriate "projection operator." The idea is in fact 
quite simple. Given the full N-part icle/z and some time-independent rule 
to generate a reduced /-~R, one is instructed to construct a linear mapping 
P~R, the form of which depends only on /~R, which satisfies three funda- 
mental requirements: 

1. At any given time, 

P~R/~ = ~R (29) 

2. For any ( ( 1 , . . . ,  N) ,  

P~R(tz)P~R(q)~(1,..., N)  = P~R(,2)~c(1,..., N)  for t2 >- tl (30) 

3. At any given time t, 

[Pc,, O/Ot]~ =-- 0 (31) 

The first of these requirements says that the mapping "projects out" 
from the full/~ the desired/~R. The second implies that, at any given instant 
of time, P is idempotent, i.e., that, in terms of its action on an arbitrary 
~(1, . . . ,  N) ,  P is a "projection operator." This expresses the sense in which 
tZR and /~i really are orthogonal. However, because the rule to generate P 
depends on the time-dependent /~R(t), the operations of time translation 
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and projection need not necessarily commute, so that this notion of 
orthogonality might be inconsistent with the fundamental dynamics. What 
the third requirement says is that, at least when restricted to their action 
on/z ,  these operations do effectively commute, so that 

P(Olx/Ot) = O(Pl~)/Ot = OlZR/Ot (32) 

This shows that the notion of orthogonality really is consistent with the 
dynamics. 

Given such a P, one concludes immediately that the single Liouville 
equation (1) is equivalent to the coupled system 

O~R/Ot + PLtZR = -PLlz~ (33) 

OlzffOt + (1 - P)LtzI = - (1  - P)LI~R (34) 

At this stage, however, it is easy to solve (34) in terms of an initial condition 
/zi(to) to express/z~(t) as a functional o f / z R ( t - r ) ;  by inserting that formal 
solution back into (33), one concludes that 

OtzR/Ot + PLtZR = C[/~R] (35) 

where 

C[/XR] = - P ( t ) L ( t ) c g ( t ,  to)l~(to) 

IO -tO + . & ' P ( t ) L ( t ) ~ ( t ,  t - - r ) [ 1 - - P ( t - - r ) ] L ( t - - r ) # R ( t - - ' r )  (36) 

and (;2 } 
cg(t2, tl)------ T e x p  - d ' c [ 1 - P ( r ) ] L ( T )  (37) 

tl 
Here P(t )  is a shorthand for the operator P,R associated with /ZR(t), and 
T denotes a time-ordering operator which explains how one is to interpret 
the exponential in equation (37). The important point is that, given (35), 
the time derivative of S[t~R] can be expressed in terms of/ZR(t--7) ,  with 
reference to the physically inaccessible/z~ only through the propagation of 
an initial condition/xi(to). 

It is important to stress that, for an arbitrary #R, there is no guarantee 
that there will exist any P,R which satisfies the three requirements (29)-(31). 
The existence of such a P~,R actually constitutes an important check that 
some choice of/zR is in fact a "natural" one. The fact that, at least for p --- 1 
and 2, the ~ [  admit to such a construction is therefore an important 
additional justification for believing that the Sp are reasonable objects to 
consider. The comparatively trivial case p = 1 is treated in Section 5. The 
case p = 2 is already much more complicated, but, as described by Kandrup 
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and Hill Kandrup (1984), one can in fact construct an analogous subdy- 
namics at the two-particle level. Kandrup (1988) uses that subdynamics to 
evaluate dS2/dt. It appears straightforward, albeit messy, to generalize the 
analysis to p > 2. 

5. THE TIME DERIVATIVE dSl(t)/dt 

Turn now to evaluating dSl(t)/dt. Here the first order of business is 
to construct explicitly a "projection operator" P which will generate the 
desired closed equation for/ . ,1.  As noted already, there was no guarantee 
a priori that such a P even exists, and, similarly, there is no guarantee that 
there need exist at most one such P. It is, however, relatively easy to exhibit 
one such P and then use it to evaluate dS~/dt. Specifically, one verifies 
explicitly (Willis and Picard, 1974) that, for the g I of equation (7), equations 
(29)-(31) are satisfied by an operator 

i = 1  j " :  j = l  

Given this form for P, it is easy to see that 

N 
1 1 PLtZR = (L)/ZR = E (L,)/zl  (39) 

i = 1  

where (L) denotes an "average" Liouville operator which decouples into a 
sum of one-particle contributions (Li) involving only the xl and pi of the 
ith particle. In the absence of particle interactions, L itself will decouple 
into a sum of one-particle L ~ and (L ~ = L ~ If, alternatively, interactions 
are present, (Li) is the sum of the free L ~ and an average interaction 
Liouvillian defined with respect to /ZR itself. This means in particular that 
the approximate relation Ol~ I( t)/O t + PLIz I = 0, which obtains by neglecting 
the contribution PLtx~, is nothing other than the Vlasov equation appropri- 
ate fo r / z  1. 

As a concrete example, consider a quantum mechanical system with 
particles coupled via an interaction Hamiltonian involving pairs H I .  In this 
case, the true interaction Liouvillian satisfies 

L ~ ( 1 , . . . ,  N)  = i • [ H  I , ~] (40) 
j ~ i  

whereas the "average" (LI~) entails a replacement 

H~ ~ Tr~ f ( j )H~ (41) 
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Given that the Vlasov equation conserves the Boltzmann entropy Ss = 
S~, it follows that the time derivative 

dS1/dt = -Tr(1 +log ~ )  ol~l/ot = -Tr(1  +log /~R) C[ /~R]I  ~ (42) 

reflects only the "deviations from mean field conditions" buried in C[/~ 1] = 
PLI~ 1. Using equations (36), (38) and (39), it is then straightforward to 
show [see Kandrup (1987) for a discussion of the corresponding field- 
theoretic case] that 

dS,( t)/ dt = - T r  txRl( t)D( t)~g( t, to)tX~( to) 

frO t -- t o + d~.Trt~a(t)~(t)~(t ,  t - z ) ( ( t - . r )  (43) 

where 

D = L I / z ~ ,  ~ = ( L - ( L ) ) / z  I (44) 

It follows that, in the absence of initial correlations, d S  1 ( t o ) / d t  =- 0 but, 
as correlations evolve after a time At, dS1/dt will be positive and the entropy 
will begin to increase in the fashion predicted by equation (25). This is the 
"spontaneous generation of entropy" induced by the evolving dynamics. 
If, however, /~I(to)# 0, dSl(to)/dt certainly need not vanish. Rather, one 
sees that 

dSl( to)/ dt = Tr p, Rl( to)D( to)bti( to) (45) 

Nontrivial/~ ~ (to) can induce "stimulated changes in the entropy" of indeter- 
minate sign. 

6. A SIMPLE EXAMPLE 

Three conclusions have been reached regarding the time evolution of 
Sp(t) from an uncorrelated state at time to. (1) For all later times t, 
Sp(t) >- Sp(to), with equality if and only if, at time t, once again/~ factorizes 
into a product  of p-particle groupings. (2) At least when p = 1 or 2, dSp(t)/dt 
can be realized as a nonlocal functional o f /~P( t -~ ' ) .  (3) When p = 1, for 
short times, Sp(t)-Sp(to) grows as ( t - t o )  2. 

However, nothing conclusive has been said about the longer time 
evolution of the S v. One has the intuition that S v will increase "as correla- 
tions grow," but one also knows that most realistic systems are periodic, 
or nearly periodic (although the period may be very large !), so that, even- 
tually, correlations can decay and Sp decrease. The object here is to explore 
the effects of such periodicities by studying Sl(t) for the simple example 
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of  two classical, linearly coupled  oscillators characterized by the time- 
independent  Hamil tonian  

2 
H =  ~ 1 2 2 2 2 (46) ~(pi+0) qi)+cqlq2, [ c l < w  

i=1  

Motions derived f rom this H will be doubly  periodic with squared 
frequencies 

~ 2  = w2+ c > 0  (47) 

The general solution o f  the particle equations can be written out 
explicitly. Thus, setting 

A ~ ( 0 ) 2 +  C)  1/2 - -  0) (48) 

one concludes that, in terms of  initial condit ions pO and qO at to = 0, 

qi(t) = qO cos wt cos At 

+(pO/~+~_)(0) sin 0)t cos At - A  cos 0)t sin At) 

_ qO sin 0)t sin At 

+ (p~ cos 0)t sin A t -  A sin tot cos At) (49) 

and 

pi(t) =pO cos ~ot cos At 

-- q~ sin 0)t cos A t + A  cos 0)t sin At) 

_pO sin 0)t sin At 

- q~ cos 0)t sin A t + A  sin 0)t cos At) (50) 

where i = 1 or  2 and j r i. Given these explicit formulas,  one can evaluate 
the evolution o f  an initial/x(t0 = 0); and, given/~ (t), one can compute  Iz~(t) 
and the associated Sl(t). 

As a concrete example,  consider an initial state 

/x(to = 0) = (/30)/27r) 2 exp(- /3H0)  (51) 

which would  correspond to equilibrium in the absence o f  the coupl ing 
cqlq2. Here one calculates explicitly that 

Sl(t)=2-21og(~w/2rr)+log(ab-c2)=-S(O)+log(ab-c 2) (52) 
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where 

a = cos 2 cot cos 2 At + s i n  2 cot sin 2 At 

2/co2..}- A2X co~ )~ -  2 -} (---~-~_&--T~ ~sln cotcos2At+cos2cotsin2At) 

4o93 
(co2 A2) 2 sin cot cos cot sin At cos At (53) 

b = cos 2 cot cos 2 At + s i n  2 cot sin 2 At 

+ (1 + A2/coZ)(sin2 cot cos 2 At + c o s  e cot sin 2 At) 

+ (4A/co) sin cot cos cot sin At cos At (54) 

A 2 
c (co2_ A2) sin cot cos cot(sin 2 A t - - c os  2 At) 

A( 2co2- A2 ) 2 
+ ~ (cos c o t - s i n  2 cot) sin At cos At (55) 

When  t = 0, ab = 1 and c = 0, so that one recovers the s tandard ent ropy So 
for two free oscillators, but,  for t > 0, $1 initially increases and then exhibits 
a complicated doubly  per iodic  time dependence.  

One obvious point  to note is that  the total  S~ will itself be strictly 
periodic if the frequencies f~+ and f~_ are commensurate .  Moreover ,  even 
it" f~+ and 12_ are not  commensurate ,  there will exist times t at which the 
system has returned arbitrarily close to its initial state, so that  Sl( t)  - Sl(to) 
is arbitrarily small. 

The second important  point  is that this long-term periodicity would  be 
lost completely if, in the spirit o f  ordinary kinetic theory, one tried to realize 
Sl(t)  perturbatively in powers o f  the coupl ing c. Thus, for example,  working 
to O(c2), one sees that 

S = S(0) -{- (C2/CO 4) sin 2 cot (56) 

In this approximat ion,  the complicated f~+ and f~_ periodicities are lost 
and S~ simply oscillates with a period or/co that reflects the unper turbed  
motion.  If, alternatively, one works to O(c4), one begins to see deviations 
f rom this unper turbed periodicity, a l though the " t rue"  periodicities fl• are 
still lost. 

It is also instructive to obtain (56) directly f rom equat ion (43). Working  
to O(c2), one concludes quite generally that, if/x~(t0) = 0, 

Io' dS(t)/dt= drTrf-l(1; t ) f -~(2;  t)~(t)~(t-r) (57) 
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where, in terms of the average value 

(q~) ~ Tri f ( i )  qi (58) 

one has the quantity 

r = c[(q,-(q~)) O/Opg+(q2-(q2)) O/Op~]f(1)f(2) (59) 

and ~ ' ( t - r )  is evaluated at retarded time t - r  in the approximation that 
the oscillators follow unperturbed c = 0 periodic trajectories. The special 
initial condition implies that, to lowest order, (qi)= 0, that f (1;  t ) = f ( i ;  0), 
and that most other expectation values, such as (qlPa q2P2), vanish identically. 
Thus, one concludes that 

fO t dS1/dt = ~2c2((q2)(p2)+(q~)(p21)) dr (cos 2 t o r -  sin 2 tot) 

---- (2C2/to 3) sin tot cos tot (60) 

in agreement with equations (25) and (56). 
This simple calculation reveals two important conclusions. (1) I f  the 

coupling c is chosen judiciously, the entire system, and hence S(t), will 
evidence a periodic behavior. Moreover, even if the coupling is not so 
chosen, there will exist times t where Sl(t ) -S~(to) is arbitrarily small. (2) 
These long-term effects will be lost completely in a simple perturbation 
expansion. This long-term (near) periodicity, which manifests Poincar6 
recurrence, is intrinsically nonperturbative. 

These conclusions reflect (1) the true periodicity of  the unperturbed 
c = 0 trajectories and (2) the fact that the true motion is doubly periodic. 
It is therefore instructive to consider the special case with w 2 = - c  = )t 2/2 > 0, 
where 

A2 
H x 2 = ~p~+--~(q,-q2)2=-Ho+Hi (61) 

i=1 

Here the "natural"  unper turbed/40 corresponds to free rectilinear motion, 
so that is it instructive to consider the entropy $1 associated with an initial 

t z ( to=O)=(f l~ /2~)2exp �89 ( p i + ~  qi) (62) 
i=l 

This corresponds to an initial Maxwellian distribution of velocities for a 
system localized in a spatial region of dimensions _(flf~2)-l.  In this case, 

Sl(t) = 2 - 2  1og(/3l~/2~-) + log(ab - c 2) = S(0) + log(ab - c=) (63) 
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where 

a = �89 + cos 2 At) + l (~ /h )2 (h  2t2 + sin 2 At) 

b = �89 + cos 2 At) +�89 2 sin 2 At 

c =�89189 - f l / h )  sin At cos At 

For small t<< A -~, one sees that 

S~ -~ S(0) + (h 2t)2/(2f~ 2) 

(64) 

(65) 

(66) 

(67) 

a result consistent with equation (43), but, in general, as t grows, the time 
dependence of $1 becomes more complicated, exhibiting the frequency 
associated with oscillations about the center of  mass. Here, however, 
although dS1/dt need not be monotonic, it is clear that S~(t) can never 
return to its initial value S(0). Indeed, as t-~oo, S~(t) actually diverges 
logarithmically. This does not, however, imply that dS1/dt is monotonic as 
t ~ oo. Rather, one sees that 

dS~(t)/dt-~ [ 2 A ( A 2 - ~  2) sin At cos At]/(O 2 cos 2 At+/~2 sin 2 At) (68) 

These general conclusions are altered significantly if one supposes 
instead that A 2--- - r / 2 < 0 .  In this case, S~(t) diverges linearly as t - > ~  and 
dSx( t--> ~ ) /  dt ~ 4r 1. 

These asymptotic forms are both easy to understand. When A2> 0, the 
qi will diverge as t, so that Ho(t) ~ t 2 and the entropy S~ ~ l o g  Ho(t) - l o g  t. 
Alternatively, when A2<0, both the qi and the pi will diverge as exp(r/t), 
so that Ho(t)~exp(2rl t)  and S l - l o g H o ( t ) - - t .  In each case, q i ( t - ~ )  
diverges for all finite qi (to = 0), so that the conditions for the validity of  the 
Poincar6 recurrence theorem are not met. 

7. PERTURBATIVE FORMULAS YIELDING ENTROPY INCREASE 

The periodic phenomena  observed in Section 6 manifest the fact that 
a system initially free of  correlations will tend immediately to generate 
correlations, but that, later, there can exist phases of the evolution during 
which these correlations actually "decay."  Such a decay of correlations 
seems, however, contrary to physical intuition and practical experience; 
consequently, it is natural to ask why it is that one does not actually see 
this sort of  behavior in realistic large-scale systems. Any answer to this 
question would appear  to involve at least two basic observations. 

1. At least in the weak coupling limit, the short-time wiggling that is 
manifest, e.g., in (56) is only a reflection of  the fact that the unperturbed 
motions are themselves periodic. For many realistic systems, however, the 
"natural"  unperturbed motion is in fact rectilinear rather than oscillatory, 
so that there is no short-term unperturbed periodicity. The interactions 
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among the particles may well induce new periodicities, but, at least for 
weak couplings, these should be very long. Thus, in Section 6, when 
perturbing about orbits with period To = 2or~w, one acquired an additional 
periodicity 7"1 =27r/A~acrw/Ic], which, for small Ic[, is very much larger 
than To. Similarly, when w 2 = - c  = A2/2, one had no unperturbed periodicity 
and obtained only an induced T1 = 2~r/h, which, for small [h l, should again 
be extremely large. 

2. For realistic systems, any long-term true or near periodicity manifest- 
ing Poincar6 recurrence should occur on a time scale t* much greater than 
any other time scale of interest. Systems may well evolve back to a nearly 
uncorrelated state, at least in principle, but the time before this happens 
will in general be extremely long. This is the essence of Boltzmann's (1896) 
response to Zermelo's (1896) proof  of the Poincar6 recurrence theorem. 
Indeed, one might argue further that if this t* is sufficiently long, even very 
weak interactions of a nearly isolated system with its surroundings will tend 
to accumulate, so that the deterministic statistical evolution embodied in 
the Liouville equation, which implies the recurrence, must, as a practical 
matter, be modified somewhat. 

As illustrated in Section 6, both Poincar6 recurrence and induced 
multiple periodicities can be lost easily in the context of perturbation theory 
and consequently one might conjecture that, in the context of such a 
perturbation expansion, the evolution of many nearly periodic systems will 
in fact appear to satisfy an H-theorem inequality like dS1/dt >-0. Indeed, 
this is really true! If  one views classical two-body interactions as weak, 
short-range perturbations about free, rectilinear trajectories, it follows that, 
to lowest nontrivial order, f~(t) satisfies the standard Landau (1937) 
equation. As is well known (see, e.g., Balescu, 1975), this Landau equation 
implies that dS1/ dt >- O. 

That this is the case is relatively easy to see. Simply consider a classical 
system characterized by an H I  = hurb(lxu]), where the h u are small, and 
evaluate dSl/dt consistently in a perturbative expansion to O(A2). The net 
result is that 

dSl/dt=li~l(AU)2 I d3x f d3pi f d3pj f d3k6(k'Pu)l~ju,2 (69) 

where, in terms of the Fourier-transformed ~u([k]) and the quantities 

Pu=-P~-PJ, OU=-O/Op~-O/Opj 
one has 

~u = d~iJ(lkl)f-'/2( x, P~; t)f-'/2( x, Pd; t) 
x [k. OUf(x, p~; t)f(x, pj; t)] (70) 

The time derivative dS1/dt can never be negative. 
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If, moreover, 

lim [k4flpij(Ik[) 2] = 0 (71) 
Lkl-~o 

a condition holding for potentials ~(Ir[) which, at large r, fall off faster 
than r -l,  equality can obtain in (68) if and only if the term in brackets in 
equation (70) is proportional to k. Po. Thus, if one demands that the integral 

d3pf(x, p, t) be finite, it follows that $1 must be increasing unless it has 
achieved a special end state with 

fo(x, p,) ~ exp(-/3p~/2) (72) 

where/3 is independent of  i. This is precisely Boltzmann's /-/-theorem! 
Alternatively, if (71) does not hold, the situation is more complicated. 

In this case, one can still show that $1 must never decrease, but now there 
is in fact no special end state (72). For a long-range interaction like gravity, 
even a naive perturbation expansion precludes the possibility of  any "equili- 
brium" state (Prigogine and Severne, 1966; Kandrup, 1985). 
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